手法:EEGLAB(Delorme & Makeig 2004)/MNE-Python(Gramfort et al. 2013)で前処理、ICLabel(Pion-Tonachini et al. 2019)で自動ICA、BIDS-EEG(Pernet et al. 2019)で標準化保管。
代表的査読研究(APA)
Cook, S. J., et al. (2019). Whole-animal connectomes of C. elegans. Nature, 571, 63–71. https://doi.org/10.1038/s41586-019-1352-7
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. J. Neurosci. Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Goldberger, A. L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101, e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215
Gramfort, A., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci., 7, 267. https://doi.org/10.3389/fnins.2013.00267
Michel, C. M., & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. NeuroImage, 61(2), 371–385. https://doi.org/10.1016/j.neuroimage.2011.12.039
Pernet, C. R., et al. (2019). EEG-BIDS. Sci. Data, 6, 103. https://doi.org/10.1038/s41597-019-0104-8
Pion-Tonachini, L., et al. (2019). ICLabel. NeuroImage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026
Scheffer, L. K., et al. (2020). A connectome of the adult Drosophila central brain. eLife, 9, e57443. https://doi.org/10.7554/eLife.57443
Tangermann, M., et al. (2012). Review of the BCI Competition IV. Front. Neurosci., 6, 55. https://doi.org/10.3389/fnins.2012.00055
van de Velden, D., et al. (2023). Effects of inverse methods and spike phases on interictal high-density EEG source reconstruction. Clinical Neurophysiology, 173, 1–12. https://doi.org/10.1016/j.clinph.2023.08.020
Van Essen, D. C., et al. (2013). The WU-Minn Human Connectome Project. NeuroImage, 80, 62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041
線形再構成(Nishimoto et al. 2011, Curr Biol):V1-V3のvoxel weighted sum。
深層生成(Shen et al. 2019, Nat Commun):DNN特徴+逆写像で自然画像復元。
Diffusionモデル:Takagi, Y., & Nishimoto, S. (2023). High-resolution image reconstruction with latent diffusion models from human brain activity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
手法:EEGNet/EEG-TCNet(Lawhern et al. 2018, Ingolfsson et al. 2020)+自己教師あり、MOABB(Jayaram & Barachant 2018)で標準検証、Braindecode(Schirrmeister et al. 2017)でdeep learning実装。
代表的査読研究(APA)
Lawhern, V. J., et al. (2018). EEGNet: A compact CNN for EEG-based BCI. J. Neural Eng., 15, 056013. https://doi.org/10.1088/1741-2552/aace8c
Jayaram, V., & Barachant, A. (2018). MOABB: Trustworthy algorithm benchmarking for BCIs. J. Neural Eng., 15, 066011. https://doi.org/10.1088/1741-2552/aadea0
Markram, H., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163, 456–492. https://doi.org/10.1016/j.cell.2015.09.029
Nishimoto, S., et al. (2011). Reconstructing visual experiences from brain activity. Curr. Biol., 21, 1641–1646. https://doi.org/10.1016/j.cub.2011.08.031
Schirrmeister, R. T., et al. (2017). Deep learning with CNNs for EEG decoding and visualization. Hum. Brain Mapp., 38, 5391–5420. https://doi.org/10.1002/hbm.23730
Shen, G., et al. (2019). Deep image reconstruction from human brain activity. Nat. Commun., 10, 1793. https://doi.org/10.1038/s41467-019-09552-7
Willett, F. R., et al. (2021). High-performance brain-to-text communication by decoding imagined handwriting. Nature, 593, 249–254. https://doi.org/10.1038/s41586-021-03506-2
3. 脳を動かす(Control)
目的は、標的回路の因果操作と機能回復/拡張です。閉ループ刺激・BMI・適応型神経調節を含みます。
3.1 非侵襲刺激(Non-invasive Stimulation)
電気刺激
tDCS(直流):運動野・前頭葉の興奮性調節、作業記憶・運動学習の促進。
tACS(交流):α/θ/γ帯域同期、閉ループ位相ロック(Zrenner et al. 2018, Brain Stim)で可塑性制御。
Temporal Interference(Grossman et al. 2017, Cell):2周波干渉で深部選択的刺激、マウス海馬で実証。
手法:高速SSVEP(Chen et al. 2015, PNAS)、位相ロックtACS(Zrenner et al. 2018, Brain Stim)、EEGNet(Lawhern et al. 2018)でリアルタイム分類、OpenViBE/BCI2000で統合実装。
代表的査読研究(APA)
Grossman, N., et al. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169, 1029–1041. https://doi.org/10.1016/j.cell.2017.05.024
Little, S., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Brain, 136, 2058–2065. https://doi.org/10.1093/brain/awt023
Ramirez, S., et al. (2013). Creating a false memory in the hippocampus. Science, 341, 387–391. https://doi.org/10.1126/science.1239073
Zrenner, C., et al. (2018). Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity. Brain Stim., 11, 374–389. https://doi.org/10.1016/j.brs.2017.11.016
Aboitiz, F., et al. (1992). Fiber composition of the human corpus callosum. Brain Research, 598(1-2), 143–153. https://doi.org/10.1016/0006-8993(92)90178-C
Hochberg, L. R., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485, 372–375. https://doi.org/10.1038/nature11076 (Utah Array長期使用)
Nurmikko, A. (2020). Challenges for Large-Scale Cortical Interfaces. Neuron, 108(2), 259–269. https://doi.org/10.1016/j.neuron.2020.10.015
Rapeaux, A. B., & Constandinou, T. G. (2021). Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Current Opinion in Biotechnology, 72, 102–111. https://doi.org/10.1016/j.copbio.2021.10.001
Year 1-5:単一脳領域(海馬)からのエピソード記憶デコーディング精度向上 (現状:カテゴリレベル → 目標:シーン詳細レベル)
Year 6-10:複数脳領域の同時記録と記憶表現の統合(ECoG/深部電極アレイ)
Year 11-15:デコードした記憶の外部保存と再生(読み出し+符号化検証)
Year 16-20:外部記憶の脳への書き込み実証(動物モデル、限定的記憶内容)
Year 20-30:ヒトでの倫理承認、初期臨床試験(医療適応:認知症・PTSD等)
Year 30+:健常者への大規模記憶転送(全人格要素の統合転送)
追加参考文献(記憶科学)
Josselyn, S. A., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future. Science, 367(6473), eaaw4325. https://doi.org/10.1126/science.aaw4325
Liu, X., et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381–385. https://doi.org/10.1038/nature11028
Ortega-De San Luis, C., & Ryan, T. J. (2022). Understanding the physical basis of memory: Molecular mechanisms of the engram. Journal of Biological Chemistry, 298(5), 101866. https://doi.org/10.1016/j.jbc.2022.101866
Oudiette, D., & Paller, K. A. (2013). Upgrading the sleeping brain with targeted memory reactivation. Trends in Cognitive Sciences, 17(3), 142–149. https://doi.org/10.1016/j.tics.2013.01.006
Zaki, Y., et al. (2022). Hippocampus and amygdala fear memory engrams re-emerge after contextual fear relapse. Neuropsychopharmacology, 47(11), 1992–2001. https://doi.org/10.1038/s41386-022-01407-0
Markram, H. (2006). The Blue Brain Project. Nature Reviews Neuroscience, 7(2), 153–160. https://doi.org/10.1038/nrn1848
Amunts, K., et al. (2019). The Human Brain Project—Synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biology, 17(7), e3000344. https://doi.org/10.1371/journal.pbio.3000344
Chen, X., et al. (2015). High-speed spelling with a noninvasive brain–computer interface. PNAS, 112, E6058–E6067. https://doi.org/10.1073/pnas.1508080112
Cook, S. J., et al. (2019). Whole-animal connectomes of C. elegans. Nature, 571, 63–71. https://doi.org/10.1038/s41586-019-1352-7
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. J. Neurosci. Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Goldberger, A. L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101, e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215
Gramfort, A., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci., 7, 267. https://doi.org/10.3389/fnins.2013.00267
Grossman, N., et al. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169, 1029–1041. https://doi.org/10.1016/j.cell.2017.05.024
Jayaram, V., & Barachant, A. (2018). MOABB: Trustworthy algorithm benchmarking for BCIs. J. Neural Eng., 15, 066011. https://doi.org/10.1088/1741-2552/aadea0
Lawhern, V. J., et al. (2018). EEGNet: A compact CNN for EEG-based BCI. J. Neural Eng., 15, 056013. https://doi.org/10.1088/1741-2552/aace8c
Little, S., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Brain, 136, 2058–2065. https://doi.org/10.1093/brain/awt023
Markram, H., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163, 456–492. https://doi.org/10.1016/j.cell.2015.09.029
Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks. NeuroImage, 180, 577–593. https://doi.org/10.1016/j.neuroimage.2017.11.062
Nishimoto, S., et al. (2011). Reconstructing visual experiences from brain activity. Curr. Biol., 21, 1641–1646. https://doi.org/10.1016/j.cub.2011.08.031
Pernet, C. R., et al. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci. Data, 6, 103. https://doi.org/10.1038/s41597-019-0104-8
Pion-Tonachini, L., et al. (2019). ICLabel: An automated EEG independent component classifier. NeuroImage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026
Ramirez, S., et al. (2013). Creating a false memory in the hippocampus. Science, 341, 387–391. https://doi.org/10.1126/science.1239073
Scheffer, L. K., et al. (2020). A connectome of the adult Drosophila central brain. eLife, 9, e57443. https://doi.org/10.7554/eLife.57443
Schirrmeister, R. T., et al. (2017). Deep learning with CNNs for EEG decoding and visualization. Hum. Brain Mapp., 38, 5391–5420. https://doi.org/10.1002/hbm.23730
Shen, G., et al. (2019). Deep image reconstruction from human brain activity. Nat. Commun., 10, 1793. https://doi.org/10.1038/s41467-019-09552-7
Tangermann, M., et al. (2012). Review of the BCI Competition IV. Front. Neurosci., 6, 55. https://doi.org/10.3389/fnins.2012.00055
Van Essen, D. C., et al. (2013). The WU-Minn Human Connectome Project. NeuroImage, 80, 62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041
Willett, F. R., et al. (2021). High-performance brain-to-text communication by decoding imagined handwriting. Nature, 593, 249–254. https://doi.org/10.1038/s41586-021-03506-2
Zrenner, C., et al. (2018). Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity. Brain Stim., 11, 374–389. https://doi.org/10.1016/j.brs.2017.11.016
Sandberg, A., & Bostrom, N. (2008). Whole Brain Emulation: A Roadmap. Technical Report #2008-3, Future of Humanity Institute, Oxford University.
Parfit, D. (1984). Reasons and Persons. Oxford University Press. (自己同一性・心理的連続性)
Gazzaniga, M. S. (2005). Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci., 6, 653–659. https://doi.org/10.1038/nrn1723 (分離脳研究)
全脳アーキテクチャ・イニシアティブ(WBAI)公式サイト・報告書(年不明).
倫理・ELSI文献
Génova, G., Moreno, V., & Parra, E. (2024). A free mind cannot be digitally transferred. AI & Society, 39, 389–394. https://doi.org/10.1007/s00146-022-01519-7
UNESCO (2021). Recommendation on the Ethics of Artificial Intelligence.
Ienca, M., & Andorno, R. (2017). Towards new human rights in the age of neuroscience and neurotechnology. Life Sci. Soc. Policy, 13, 5. https://doi.org/10.1186/s40504-017-0050-1 (ニューロライツ)